article

Radoin Belaouar and Thierry Colin and Gerard Gallice and Cedric Galusinski


Modelisation Group (2006) : Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping




Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

Radoin Belaouar and Thierry Colin and Gerard Gallice and Cedric Galusinski




article

ESAIM: M2AN

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the electron diffusion equation, we perform numerical simulations and show how Landau damping works quantitatively.

To cite this publication :


Radoin Belaouar, Thierry Colin, Gerard Gallice, Cedric Galusinski: Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. Dans: ESAIM: M2AN, 40 (6), p. 961-990, 2006.





Candidature
Documentation

En savoir plus ?

Contactez-nous et téléchargez une documentation


Aussi intéressé(e) par :