Christophe Rodrigues; Marius Ortega; Aurélien Bossard; Nédra Mellouli
REDIRE: Extreme REduction DImension for extRactivE Summarization Article de journal
Dans: Data & Knowledge Engineering, vol. 157, p. 102407, 2025.
@article{rodrigues_3621,
title = {REDIRE: Extreme REduction DImension for extRactivE Summarization},
author = {Christophe Rodrigues and Marius Ortega and Aurélien Bossard and Nédra Mellouli},
url = {http://dx.doi.org/10.1016/j.datak.2025.102407},
year = {2025},
date = {2025-01-01},
journal = {Data & Knowledge Engineering},
volume = {157},
pages = {102407},
abstract = {This paper presents an automatic unsupervised summarization model capable of extracting the most important sentences from a corpus. The unsupervised aspect makes it possible to do away
with large corpora, made up of documents and their reference summaries, and to directly process documents potentially made up of several thousand words. To extract sentences in a summary, we use pre-entrained word embeddings to represent the documents. From this thick cloud of word vectors, we apply an extreme dimension reduction to identify important words, which we group by proximity. Sentences are extracted using linear constraint solving
to maximize the information present in the summary. We evaluate the approach on large documents and present very encouraging initial results.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Oussama Ayoub; Christophe Rodrigues; Nicolas Travers
LoGE: an unsupervised local-global document extension generation in information retrieval for long documents Article de journal
Dans: International Journal of Web Information Systems, vol. 19, no. 5/6, p. 244-262, 2023.
@article{ayoub_2411,
title = {LoGE: an unsupervised local-global document extension generation in information retrieval for long documents},
author = {Oussama Ayoub and Christophe Rodrigues and Nicolas Travers},
url = {https://www.emerald.com/insight/content/doi/10.1108/IJWIS-07-2023-0109/full/html},
year = {2023},
date = {2023-11-01},
journal = {International Journal of Web Information Systems},
volume = {19},
number = {5/6},
pages = {244-262},
abstract = {Purpose
This paper aims to manage the word gap in information retrieval (IR) especially for long documents belonging to specific domains. In fact, with the continuous growth of text data that modern IR systems have to manage, existing solutions are needed to efficiently find the best set of documents for a given request. The words used to describe a query can differ from those used in related documents. Despite meaning closeness, nonoverlapping words are challenging for IR systems. This word gap becomes significant for long documents from specific domains.
Design/methodology/approach
To generate new words for a document, a deep learning (DL) masked language model is used to infer related words. Used DL models are pretrained on massive text data and carry common or specific domain knowledge to propose a better document representation.
Findings
The authors evaluate the approach of this study on specific IR domains with long documents to show the genericity of the proposed model and achieve encouraging results.
Originality/value
In this paper, to the best of the authors' knowledge, an original unsupervised and modular IR system based on recent DL methods is introduced.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Oussama Ayoub; Ludovic Li; Christophe Rodrigues; Nicolas Travers
LoGE: Expansion Locale-Globale de document non supervise avec un moteur de recherche Extensible Conférence
TextMine - Groupe de travail sur la fouille de textes @ confrence EGC, Lyon, France, 2023.
@conference{ayoub_2078,
title = {LoGE: Expansion Locale-Globale de document non supervise avec un moteur de recherche Extensible},
author = {Oussama Ayoub and Ludovic Li and Christophe Rodrigues and Nicolas Travers},
url = {https://textmine.sciencesconf.org/resource/page/id/4},
year = {2023},
date = {2023-01-01},
booktitle = {TextMine - Groupe de travail sur la fouille de textes @ confrence EGC},
address = {Lyon, France},
abstract = {Avec la croissance continue des donnes textuelles que les systmes d'information modernes doivent grer, des solutions de recherche d'information sont ncessaires pour trouver efficacement le meilleur ensemble de documents pour une demande donne.Pour rsoudre ce problme, nous proposons un moteur de recherche extensible qui vise gnrer une expansion des documents en s'appuyant sur des mthodes rcentes d'apprentissage profond et mis en uvre sur Elasticsearch. Pour gnrer de nouveaux mots pour un document, un modle de langage masqu d'apprentissage profond est utilis pour infrer des mots apparents.La dmonstration montrera la fois l'extensibilit de notre cadre de gnration d'expansions, l'efficacit de l'valuation et l'impact de diverses expansions sur la correspondance des requtes.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Oussama Ayoub; Christophe Rodrigues; Nicolas Travers
Un générateur d'extension de documents non supervisé pour moteurs de recherche Conférence
GdR Traitement Automatique de la Langue, CNRS@IRISA Rennes, France, 2022.
@conference{ayoub_2079,
title = {Un générateur d'extension de documents non supervisé pour moteurs de recherche},
author = {Oussama Ayoub and Christophe Rodrigues and Nicolas Travers},
url = {https://gdr-tal-rennes.sciencesconf.org/resource/page/id/2},
year = {2022},
date = {2022-10-01},
booktitle = {GdR Traitement Automatique de la Langue},
address = {Rennes, France},
organization = {CNRS@IRISA},
abstract = {Fournir un moteur de recherche pertinent dans un contexte flexible est une tache complexe du `a lh et erog e-n eit e des donn ees (vocabulaire, taille des documents, qualit e des donn ees), leurs volumes avec des corpuscons equents. Cela pose des probl`emes sur le traitement de texte et de recherche dinformation, aussi biensur lanalyse du contenu que sur la pertinence des r esultats de requetes.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Oussama Ayoub; Christophe Rodrigues; Nicolas Travers
Adaptive Search Engine for Heterogeneous Documents Conférence
36ème Conférence sur la Gestion de Données, virtual, 2020.
@conference{ayoub_1277,
title = {Adaptive Search Engine for Heterogeneous Documents},
author = {Oussama Ayoub and Christophe Rodrigues and Nicolas Travers},
url = {https://bda.lip6.fr/soumissions-acceptees/},
year = {2020},
date = {2020-10-01},
booktitle = {36ème Conférence sur la Gestion de Données},
address = {virtual},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Christophe Rodrigues; Pegah Alizadeh; Dmitry Bondarenko
Industrie 4.0 : Prédiction de données réelles par fine-tuning à partir de simulations Conférence
Extraction et Gestion de Connaissances, Bruxelles, Belgique, 2020.
@conference{rodrigues_1077,
title = {Industrie 4.0 : Prédiction de données réelles par fine-tuning à partir de simulations},
author = {Christophe Rodrigues and Pegah Alizadeh and Dmitry Bondarenko},
url = {https://egc2020.sciencesconf.org/resource/page/id/28},
year = {2020},
date = {2020-01-01},
booktitle = {Extraction et Gestion de Connaissances},
address = {Bruxelles, Belgique},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Aurélien Bossard; David Stéphane Belemkoabga; Abdallah Essa; Valentin Nyzam; Christophe Rodrigues; Kévin Sylla
Génération de résumés abstractifs de commentaires sportifs Conférence
Workshop TextMine - Atelier sur la Fouille de Textes, conférence EGC - Extraction et Gestion de Connaissances, Bruxelles, Belgique, 2020.
@conference{bossard_1235,
title = {Génération de résumés abstractifs de commentaires sportifs},
author = {Aurélien Bossard and David Stéphane Belemkoabga and Abdallah Essa and Valentin Nyzam and Christophe Rodrigues and Kévin Sylla},
url = {https://egc2020.sciencesconf.org/},
year = {2020},
date = {2020-01-01},
booktitle = {Workshop TextMine - Atelier sur la Fouille de Textes, conférence EGC - Extraction et Gestion de Connaissances},
address = {Bruxelles, Belgique},
abstract = {Dans ce papier, nous proposons une méthode permettant de générer automatiquement à partir de commentaires réalisés en direct par des journalistes sportifs un résumé de match de football. Nous montrons que cette tâche difficile met en échec les approches extractives et proposons dans un premier temps un modèle d'apprentissage reposant sur des réseaux de neurones profonds afin de sélectionner les phrases les plus pertinentes. Dans un second temps, cette réduction du bruit sur les commentaires nous permet d'apprendre à générer des résumés abstractifs à l'aide d'un réseau de neurones de type pointer-generator et nous montrons l'intérêt de la sélection des phrases pertinentes ainsi que la qualité des résumés créés automatiquement. Nous présentons des premiers résultats encourageants.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Pascal Clain; Insaf Khelladi; Christophe Rodrigues; Alessandro Biancalani; Guillaume Guérard; Saeedeh Rezaee Vessal
Increase Social Acceptability of Nuclear Fusion, Agrivoltaics, and Offshore Wind Through National Support Programmes Book Section
Dans: A. Crowther, Foulds (Ed.): Strengthening European Energy Policy: Governance Recommendations From Innovative Interdisciplinary Collaborations, p. pp. 101-113, Palgrave Macmillan, 2024, ISBN: 978-3-031-66481-6.
@incollection{clain_3168,
title = {Increase Social Acceptability of Nuclear Fusion, Agrivoltaics, and Offshore Wind Through National Support Programmes},
author = {Pascal Clain and Insaf Khelladi and Christophe Rodrigues and Alessandro Biancalani and Guillaume Guérard and Saeedeh Rezaee Vessal},
editor = {Crowther, A., Foulds, C., Robison, R., Gladkykh, G. (eds)},
url = {https://link.springer.com/chapter/10.1007/978-3-031-66481-6_8},
issn = {978-3-031-66481-6},
year = {2024},
date = {2024-09-01},
booktitle = {Strengthening European Energy Policy: Governance Recommendations From Innovative Interdisciplinary Collaborations},
pages = {pp. 101-113},
publisher = {Palgrave Macmillan},
abstract = {Policy Highlights - To achieve the recommendation stated in the chapter title, we propose the following:
- Facilitate the establishment of observatories to monitor social acceptability of low-carbon energy technologies at the EU and national levels.
- Offer technical assistance to help Member States incorporate social acceptability factors into their energy transition strategies.
- Develop training programmes to integrate social acceptability factors into the design of low-carbon energy projects from the start.
- Assist countries in managing and resolving disputes and interactions regarding different low-carbon energy technologies.
- Social Sciences and Humanities (SSH) Science, Technology, Engineering and Mathematics (STEM) collaborative recommendations can ensure policies are informed by a nuanced understanding of technical and social structures, making them more practical and widely accepted.},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Foucauld Estignard; Adrien Djebar; Hugo Deduit; Sourav Rai; Christophe Rodrigues; Adam Talbi; Nga Nguyen
Relevance of Imaged-based Representation for Android Malware Detection Proceedings Article
Dans: LIBRARY, ACM DIGITAL (Ed.): The 19th International Conference on Risks and Security of Internet and Systems, p. 543 - 557, Risks and Security of Internet and Systems: 19th International Conference, CRiSIS 2024 Springer-VerlagBerlin, Heidelberg, Aix-en-Provence, France, 2025, ISBN: 978-3-031-89349-0.
@inproceedings{estignard_3247,
title = {Relevance of Imaged-based Representation for Android Malware Detection},
author = {Foucauld Estignard and Adrien Djebar and Hugo Deduit and Sourav Rai and Christophe Rodrigues and Adam Talbi and Nga Nguyen},
editor = {ACM DIGITAL LIBRARY},
url = {https://crisis2024.univ-gustave-eiffel.fr/},
issn = {978-3-031-89349-0},
year = {2025},
date = {2025-05-01},
booktitle = {The 19th International Conference on Risks and Security of Internet and Systems},
pages = {543 - 557},
publisher = {Springer-VerlagBerlin, Heidelberg},
address = {Aix-en-Provence, France},
organization = {Risks and Security of Internet and Systems: 19th International Conference, CRiSIS 2024},
abstract = {In the face of escalating cybersecurity threats targeting Android devices, developing accurate and explainable malware detection methodologies has become increasingly crucial.
This paper studies the relevance of using image representation of bytecode for Android malware detection by introducing a new metric, the Median Color Proximity (MCP).
The MCP quantifies the degree to which applications with similar behaviors are represented by visually similar images, which we argue is a key prerequisite for using image-based representation of Android Application Packages (APK).
We conducted our analysis on a dataset of 29,555 APK files, employing Uniform Maniform Approximation and Projection (UMAP) for clustering on both their behavior and their visual representation.
Our findings reveal a significant correlation between pixel distribution and application behavior, suggesting that image-based representations effectively capture the essential behavioral characteristics of APKs.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Saber Zahhar; Nédra Mellouli; Christophe Rodrigues
Leveraging Sentence-Transformers to Overcome Query-Document Vocabulary Mismatch in Information Retrieval Proceedings Article
Dans: International Conference on Web Information Systems Engineering, p. 101-110, Springer, Singapore, Doha, Qatar, 2025, ISBN: 978-981-96-1482-0.
@inproceedings{zahhar_3624,
title = {Leveraging Sentence-Transformers to Overcome Query-Document Vocabulary Mismatch in Information Retrieval},
author = {Saber Zahhar and Nédra Mellouli and Christophe Rodrigues},
url = {https://link.springer.com/chapter/10.1007/978-981-96-1483-7_8},
issn = {978-981-96-1482-0},
year = {2025},
date = {2025-02-01},
booktitle = {International Conference on Web Information Systems Engineering},
volume = {15463},
pages = {101-110},
publisher = {Springer, Singapore},
address = {Doha, Qatar},
abstract = {Meeting the Sustainable Development Goals (SDGs) established by the United Nations, presents a large-scale challenge for all countries. To monitor progress towards these goals, there is a need to develop key performance indicators using existing data and metadata. The computation of the indicators requires integrating and analyzing heterogeneous datasets, in particular web open data. This approach aims to highlight the positive impact of the web on the society. However, the diversity of web data sources and formats raises major issues in terms of structuring and integration. Despite the abundance of open data and metadata, its exploitation remains limited, leaving untapped potential for guiding urban policies towards sustainability. We have so far introduced a novel approach for SDG indicator computation, leveraging the capabilities of Large Language Models (LLMs) and Knowledge Graphs (KGs). We have proposed a method that combines rule-based filtering with LLM-powered schema mapping to establish semantic correspondences between diverse data sources and SDG indicators, including disaggregated attributes. Our approach integrated these mappings into a KG, which enables indicator computation by querying graph's topology. Finally, we have evaluated our method through a case study focusing on the SDG Indicator 11.7.1 about accessibility of public open spaces. Our experimental results are promising showing significant improvements compared to traditional schema matching techniques.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Adam Talbi; Sourav Rai; Christophe Rodrigues; Nga Nguyen
Detecting Obfuscated Android Malware through Categorized Smali N-gram Instructions and Ensemble Learning Proceedings Article
Dans: The 19th International Conference on Risks and Security of Internet and Systems, Aix-en-Provence, France, 2024, ISBN: Later.
@inproceedings{talbi_3246,
title = {Detecting Obfuscated Android Malware through Categorized Smali N-gram Instructions and Ensemble Learning},
author = {Adam Talbi and Sourav Rai and Christophe Rodrigues and Nga Nguyen},
url = {https://crisis2024.univ-gustave-eiffel.fr/},
issn = {Later},
year = {2024},
date = {2024-11-01},
booktitle = {The 19th International Conference on Risks and Security of Internet and Systems},
address = {Aix-en-Provence, France},
abstract = {Malware detection is a critical task in ensuring the security of mobile devices. However, the growing prevalence of obfuscated malware poses challenges to traditional detection methods. In this study, we propose a new approach to detecting obfuscated malware based on Smali bytecode analysis, instruction categorization into families, N-gram vectorization and machine learning techniques. We collected a dataset comprising 8,000 obfuscated APKs from VirusTotal, with half labeled as malicious and half as benign. The dataset includes recent samples from 2024, ensuring the relevance of our results. We extracted the Smali bytecode from each APK, categorized the instructions into families, then transformed them into ordered sequences of n-grams. Our method relies on the use of ensemble learning algorithms to combine the strengths of various models. In particular, we used Random Forest and XGBoost in combination with an n-gram vectorization process of categorized Smali instructions. This approach enabled us to achieve an average F1-score of 0.96 (± 0.01) in cross-validation and a precision of 0.98 for detecting malware and 0.94 for detecting benign software on the test set, with an average recall of 0.96, the overall F1 score also reached 0.96.
Our approach, which integrates Smali bytecode analysis, instruction family categorization, and ensemble learning, has demonstrated promising results in detecting obfuscated malware. These findings underscore the importance of a detailed analysis of Smali bytecode and the effectiveness of ensemble learning algorithms in identifying obfuscated malware.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Marius Ortega; Nédra Mellouli; Aurélien Bossard; Christophe Rodrigues
REDIRE : Réduction Extrême de DImension pour le Résumé Extractif Proceedings Article
Dans: 24ème conférence francophone sur l'Extraction et la Gestion des Connaissances, Dijon, France, 2024.
@inproceedings{ortega_2654,
title = {REDIRE : Réduction Extrême de DImension pour le Résumé Extractif},
author = {Marius Ortega and Nédra Mellouli and Aurélien Bossard and Christophe Rodrigues},
url = {https://iutdijon.u-bourgogne.fr/egc2024/articles-acceptes/},
year = {2024},
date = {2024-01-01},
booktitle = {24ème conférence francophone sur l'Extraction et la Gestion des Connaissances},
address = {Dijon, France},
abstract = {This paper presents an unsupervised automatic summarization model capable of extracting the most important sentences from a corpus. To extract sentences in a summary, we use
pre-entrained word embeddings to represent the documents. From this thick cloud of word vectors,
we apply an extreme dimension reduction to identify important words, which we group
by proximity. Sentences are extracted using linear optimization to maximize the information
present in the summary. We evaluate the approach on large documents and present very encouraging initial results.},
note = {22-26/01/2024},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Christophe Haikal; Pegah Alizadeh; Christophe Rodrigues; Bi Chongke
Place Embedding across Cities in Location-based Social Networks Proceedings Article
Dans: ACM Symposium on Applied Computing, Brno, Czech Republic, 2022.
@inproceedings{haikal_1767,
title = {Place Embedding across Cities in Location-based Social Networks},
author = {Christophe Haikal and Pegah Alizadeh and Christophe Rodrigues and Bi Chongke},
url = {https://www.sigapp.org/sac/sac2022/file2022/TOC-Jan-23-2022.pdf},
year = {2022},
date = {2022-04-01},
booktitle = {ACM Symposium on Applied Computing},
address = {Brno, Czech Republic},
abstract = {In the urban computing field, analysing human mobility patterns are used to understand tourists and residents behaviours, or urban areas functionalities. Transferring the information from one city to another also assists urban strategists in comparing two cities
and applying their knowledge from one to another, such as plan- ning new touristic attractions or implementing some successful urban strategies in new cities. For this goal, in this work, we propose a twofold semi-supervised approach: we first propose a place embedding method based on users mobility trajectories in each city individually, second we learn a place translation function between two cities using the set of reviews written for each place. The translation function is based on measuring textual and semantic
similarities of the reviews. Extensive experiments on two french metropolitan areas (Lille and Bordeaux) based on the extracted data from Trip-Advisor demonstrate the effectiveness of our approach.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
David Stéphane Belemkoabga; Aurélien Bossard; Abdallah Essa; Christophe Rodrigues; Kévin Sylla
Neural Network-Based Generation of Sport Summaries: a Preliminary Study Proceedings Article
Dans: Proceedings of Recent Advances in Natural Language Processing, p. 152-159, Varna, Bulgaria, 2021.
@inproceedings{belemkoabga_1586,
title = {Neural Network-Based Generation of Sport Summaries: a Preliminary Study},
author = {David Stéphane Belemkoabga and Aurélien Bossard and Abdallah Essa and Christophe Rodrigues and Kévin Sylla},
url = {https://ranlp.org/ranlp2021/proceedings.pdf},
year = {2021},
date = {2021-07-01},
booktitle = {Proceedings of Recent Advances in Natural Language Processing},
pages = {152-159},
address = {Varna, Bulgaria},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Aomar Osmani; Pegah Alizadeh; Christophe Rodrigues
Equational Model Guided by Real-time Sensor Data to Monitor Industrial Robots Proceedings Article
Dans: International Conference on Automation Science and Engineering, Lyon, France, 2021.
@inproceedings{osmani_1543,
title = {Equational Model Guided by Real-time Sensor Data to Monitor Industrial Robots},
author = {Aomar Osmani and Pegah Alizadeh and Christophe Rodrigues},
url = {https://case2021.sciencesconf.org/},
year = {2021},
date = {2021-06-01},
booktitle = {International Conference on Automation Science and Engineering},
address = {Lyon, France},
abstract = {The monitoring of industrial robots is often en-
sured by generic simulators which model the equational aspect
of the target machines. We propose an original approach to
complete the equational simulator of a milling machine using
the accumulated data from the used sensors. This approach cre-
ates a specific simulator for each machining situation by taking
the triplet (material, cutting tool, workpiece) into account. This
improvement brings great added value to the industrial experts
and improves the efficiency of industrial robots. It allows them
to better follow and interpret the behavior of machines during
the milling process. In addition to correct the simulator using
real data, our method detects also the anomalies during the
real manufacturing performance and fixes the minor bugs
along the observed real data during its continuous simulation
mimicry. The additional interest of our model remains the
precise definition of the complementary model between the real
system and the equational simulator. This makes it possible, by
using an inductive approach to search for regularities in the
model in order to better interpret the structural differences
between the model and the system and to better understand
the situations linked to their functionalities or undesirable
situations. The intensive experiments on real data validate our
model and open up many perspectives for future works.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Valentin Nyzam; Christophe Rodrigues; Aurélien Bossard
Un outil modulaire pour le résumé automatique Proceedings Article
Dans: TALN 2018, Rennes, France, 2018.
@inproceedings{nyzam_521,
title = {Un outil modulaire pour le résumé automatique},
author = {Valentin Nyzam and Christophe Rodrigues and Aurélien Bossard},
url = {https://project.inria.fr/coriataln2018/fr/},
year = {2018},
date = {2018-05-01},
booktitle = {TALN 2018},
address = {Rennes, France},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Christophe Rodrigues
An Evolutionary Algorithm for Automatic Summarization Proceedings Article
Dans: Proceedings of Recent Advances in Natural Language Processing, p. 111-120, Varna, Bulgaria, 2017.
@inproceedings{rodrigues_282,
title = {An Evolutionary Algorithm for Automatic Summarization},
author = {Christophe Rodrigues},
url = {https://www.aclweb.org/anthology/volumes/R17-1/},
year = {2017},
date = {2017-09-01},
booktitle = {Proceedings of Recent Advances in Natural Language Processing},
pages = {111-120},
address = {Varna, Bulgaria},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Christophe Rodrigues
Comment une IA génère-t-elle une image ? Divers
The Conversation, 2024.
@misc{rodrigues_3182,
title = {Comment une IA génère-t-elle une image ?},
author = {Christophe Rodrigues},
url = {https://theconversation.com/comment-une-ia-genere-t-elle-une-image-229962},
year = {2024},
date = {2024-05-01},
howpublished = {The Conversation},
note = {https://theconversation.com/comment-une-ia-genere-t-elle-une-image-229962},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Zhe Yuan; Christophe Rodrigues
Conference on AI-enhanced learning in Paris Divers
Conference on AI-enhanced learning in Paris, 2022.
@misc{yuan_2277,
title = {Conference on AI-enhanced learning in Paris},
author = {Zhe Yuan and Christophe Rodrigues},
url = {https://www.ceied.ulusofona.pt/en/participation-of-ceied-in-the-international-conference-ai-enhanced-learning/},
year = {2022},
date = {2022-04-01},
howpublished = {Conference on AI-enhanced learning in Paris},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Miska Noponen; Anis Yazidi; Christophe Rodrigues; Zhe Yuan
Completed Module 2 content: Curriculum for AI-enhanced learning solutions Rapport technique
ERASMUS+ 2021.
@techreport{noponen_2273,
title = {Completed Module 2 content: Curriculum for AI-enhanced learning solutions},
author = {Miska Noponen and Anis Yazidi and Christophe Rodrigues and Zhe Yuan},
url = {https://erasmus-plus.ec.europa.eu/projects/search/details/2019-1-FR01-KA203-063063#},
year = {2021},
date = {2021-03-01},
institution = {ERASMUS+},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
No posts by this author.
N'hésitez pas à contacter le service des admissions pour tout renseignement complémentaire :